Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.

نویسندگان

  • Yu-Sin Jang
  • Alok Malaviya
  • Sang Yup Lee
چکیده

Conventional acetone-butanol-ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L(-1) of ABE (17.6 g L(-1) butanol, 10.5 g L(-1) ethanol, and 4.4 g L(-1) acetone) from 85.2 g L(-1) glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell-recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L(-1)  h(-1) , respectively, could be achieved at the dilution rate of 0.85 h(-1) . Further cell recycling experiments were carried out with controlled cell-bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h(-1) with the bleeding rate of 0.04 h(-1) . Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L(-1)  h(-1) , and the yields of 0.17 and 0.34 g g(-1) , respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known-processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.

The objective of this study was to optimize continuous acetone-butanol-ethanol (ABE) fermentation using a two stage chemostat system integrated with liquid-liquid extraction of solvents produced in the first stage. This minimized end product inhibition by butanol and subsequently enhanced glucose utilization and solvent production in continuous cultures of Clostridium acetobutylicum B 5313. Dur...

متن کامل

Proteomic analysis of Clostridium acetobutylicum in butanol production from lignocellulosic biomass

Background Plant biomass is an abundant and renewable source of energy rich carbohydrates that can be efficiently converted by microbes into biofuels [1]. Butanol is considered as a second generation biofuel when it is produced from lignocellulosic biomass comprising of agricultural and garden wastes that does not compete with the food supplies [2]. Clostridium acetobutylicum is a gram positive...

متن کامل

Genome Sequence of Clostridium acetobutylicum GXAS18-1, a Novel Biobutanol Production Strain

Clostridium acetobutylicum is an organism involved in the production of acetone and butanol by traditional acetone-butanol-ethanol fermentation (ABE). We report the draft genome sequence of C. acetobutylicum strain GXAS18-1, which can produce ABE directly from cassava flour.

متن کامل

Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species

Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum a...

متن کامل

BIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERING Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane

Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37°C. Overall solvent productivity of fermentation connected with continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2013